DEANSLIB.DLL

Functions & Commands to extend the power of Liberty Basic

Version 1.3

written by Dean Hodgson

August 1997. Revised June, 1998.

(c)copyright Dean Hodgson.

These DLL functions are in the public domain and can be freely used. No warranty is expressed or implied. The library was written and compiled in GFA-Basic. The library is intended for use with Liberty Basic and any other Windows language that can call DLL functions. All descriptions below pertain to Liberty Basic 1.4 and the method it uses for calling such functions.

DEANSLIB.DLL is a continually growing library of functions that will be periodically updated and changed with time.

OVERVIEW

The DEANSLIB DLL functions are a set of library functions that can be used to extend the power of Liberty Basic 1.4. Functions that do not return data to string variables can also be used in LB 1.3.

CALLING THE FUNCTIONS

In Liberty Basic, the functions are called by a statement like:

	OPEN “DEANSLIB.DLL” FOR DLL AS #ddll

	CALLDLL #ddll, “function name”, parameters, ... , result AS variable type

	CLOSE #ddll

The OPEN should appear at the start of your program and the CLOSE at the end. Most of these DLL functions are best used in reusable subroutines but can also be used directly within your own routines. Please refer to Liberty Basic’s documentation and help files for more information about calling DLL functions.

VARIABLE TYPES USED

DEANSLIB.DLL supports short and long integer numeric variables as well as strings.

The disk file commands store numeric variables in their normal compressed format and not as text as does LB.

Short integers are numbers that range from -32767 to +32767 and occupy 2 bytes of space in the disk file. Short integers are also known as “words”.

Long integers are numbers that range from -2147483648 to +2147483647 and occupy 4 bytes of space in the file.

Decimal type real numbers (single or double precision) are not supported or used by any of the functions.

String variables are lists of characters that can range from 0 bytes long (an empty string) up to 32767 bytes maximum. Do not use strings larger than this with the functions!

RETURN STRINGS

Many of the functions involve data returned in a string variable. This is not done directly as in normal LB commands, but via an indirect method involving pointers.

Strings that are to contain data upon return from the DLL must be “initialised” before being called. This is done by creating a string using SPACE$ that contains at least the number of spaces you think the resulting string will be long. The spaces will be replaced with characters after the function is called. So if you think you will get 25 characters back but are uncertain, use a larger string such as a$=SPACE$(30).

All return strings must end in CHR$(0) otherwise no data will come back. For the example, a$=SPACE$(30) + CHR$(0) is correct. Strings that you send to functions but do not expect to come back don’t need the terminating zero character -- LB automatically adds this for you.

After being returned, you should strip off the terminating CHR$(0) character and any blank spaces. This can be accomplished for I$ by:

	result$ = TRIM$(LEFT$(I$,LEN(I$)-1))

Some of the functions also return the length of the resulting string so result$ = LEFT$(I$,result) would work.

===

DISK FUNCTIONS

The disk functions provide a set of disk file commands that can be used within LB programs, particularly those intended for operation on network environments or in situations involving the use of Canon printers where the printer driver produces a “Write Buffer Error” when writing to disk. Files are opened in a shared condition so several workstations on a network can access the same file at the same time without generating a sharing violation error (the normal LB OPEN statement for disk files will produce this error). Functions are included for reading and writing short integers, long integers, decimal numbers, strings and for locking and unlocking sections of files.

DSHARE

format: CALLDLL#ddlls, “DSHARE”, result AS short

	Checks to see whether Share or Vshare is present. Returns 0 if not present or -1 if present.

	Note: The OPEN commands below automatically check for Share and only open in shared condition of present.

DOPENI

format: CALLDLL#ddlls, “DOPENI”, filenumber AS short, filename$ AS ptr, result AS short

	Opens a disk file for sequential input in shared mode for multi-user access.

	filenumber is a number between 0 and 99 that you assign to the file.

	filename$ is the string (drive:\path is optional and can be included) containing the filename. This variable must end in CHR$(0)

	result is 0 if the file was successfully opened or not 0 if there was an error.

DOPENO

format: CALLDLL#ddlls, “DOPENO”, filenumber AS short, filename$ AS ptr, result AS short

Opens a disk file for sequential output. Sharing is allowed but in practice it is not a good idea to permit reading of a sequential file while it is being written to.

	filenumber is a number between 0 and 99 that you assign to the file.

	filename$ is the name of the file which can optionally include a drive and path. This variable must end in CHR$(0).

	result is 0 if the file was successfully opened or not 0 if there was an error.

DOPENR

format: CALLDLL#ddlls, “DOPENR”, filenumber AS short, filename$ AS ptr, recordlength AS short, result AS short

	Opens a disk file for random read/write access with multi-user sharing.

	filenumber is a number between 0 and 99 that you assign to the file.

	filename$ is the name of the file which can optionally include a drive and path. This variable must end in CHR$(0).

	recordlength is the number of bytes long that you would like for each record. This must be specified.

	result is 0 if the file was successfully opened or not 0 if there was an error.

DSEEK

format: CALLDLL #ddlls, “DSEEK”, filenumber AS short, position AS long, result AS short

	Positions a pointer within an open file for subsequent reading or writing.

	filenumber is the number assigned to the opened file.

	position is the number of bytes from the start of the file to set the pointer. If position is negative it is the number of bytes from the end of the file rather than the start. A position of 0 is the start of the file. For random access files, position is not the record number but Recordlength * Recordnumber. Recordlength is the same as specified in DOPENR.

DREADI

format: CALLDLL#ddlls, “DREADI”, filenumber AS short, result AS short

	Reads a 2-byte short integer value stored in a disk file into a variable at the current position.

	filenumber is the number assigned to the opened file.

	result = -32767 if there was an error otherwise the result is the integer value read from the file.

DREADL

format: CALLDLL#ddlls, “DREADL”, filenumber AS short, result AS long

	Reads a 4-byte long integer value stored in a disk file into a variable at the current position.

	filenumber is the number assigned to the opened file.

	result = -999999 if there was an error otherwise the result is the value read from the file.

DREADS

format: CALLDLL#ddlls, “DREADS”, filenumber AS short, string$ AS ptr, length AS short, result AS short

	Reads a string of characters into a variable from the current position.

	filenumber is the number assigned to the opened file.

	string$ is the name of the string variable into which the characters will be read. This variable must first be set up to the length of characters you are reading by using the SPACE$ command and then ending in CHR$(0). Example: if you are reading 50 characters, set up your variable as Buffer$=SPACE$(50)+CHR$(0) before calling the routine. The length of this string must be equal to or greater than the length specified in the next parameter.

	Length is the number of characters to be read into the string. This is usually the same as the length of the string minus the CHR$(0) at the end. After calling this command use s$=LEFT$(Buffer$,Length) to strip off the last CHR$(0).

	Result = -999999 if there was an error otherwise the result is the value read from the file.

DWRITEI

format: CALLDLL#ddlls, “DWRITEI”, filenumber AS short, value AS short, result AS short

	Writes a short integer value to a disk file at the current position. The data occupies 2 bytes.

	filenumber is the number assigned to the opened file.

	value is the number to be written to the disk file.

	result = 0 if OK or not 0 if an error occurred.

DWRITEL

format: CALLDLL#ddlls, “DWRITEL, filenumber AS short, value AS long, result AS short

	Writes a long integer value to a disk file at the current position. The data occupies 4 bytes.

	filenumber is the number assigned to the opened file.

	value is the number to be written to the disk file.

	result = 0 if OK or not 0 if an error occurred.

DWRITES

format: CALLDLL#ddlls, “DWRITES”, filenumber AS short, string$ AS ptr, length AS short, result AS short

	Writes a string variable value to a disk file at the current position.

	filenumber is the number assigned to the opened file.

	string$ is the name of the string variable with the data to be written. String$ must end in CHR$(0), which itself is not written to the file.

	length specifies the number of characters to be written to the file. If string$ is greater than this value, string$ is truncated to fit. If string$ is less than this value, extra spaces are added to the end of string$ to fill the space.

	result = 0 if OK or not 0 if an error occurred.

DINPUT

format: CALLDLL#ddlls, “DINPUT”, filenumber AS short, string$ as ptr, result AS short

	Same as the LINE INPUT# command. Reads all characters up to but not including a CHR$(13) in a disk file.

	filenumber is the number assigned to the opened file.

	Sring$ is the name of the string variable into which the data will be read. String$ must equal to or longer than the expected amount of data to be read and end in CHR$(0). Use the technique described for DREADS.

	Result = -1 if an error otherwise the number is the number of bytes read in.

	Note: After calling this routine, the resulting string could be longer than the actual data it contains. You can use the result value to reduce the size of the string. Example:

		Buffer$ = SPACE$(100) + CHR$(0) ‘this creates a string of 100 spaces ready for input.

		CALLDLL#ddlls, “DINPUT”, FileNumber AS short, Buffer$ AS ptr, result AS short

		Buffer$ = LEFT$(Buffer$, result)

DPRINT

format: CALLDLL#ddlls, “DPRINT”, filenumber AS short, string$ as ptr, result AS short

	Same as the PRINT# command for sending text data out to a disk file. Writes all characters as text and places a CHR$(13)+CHR$(10) at the end of the line.

	Filenumber is the number assigned to the opened file.

	Sring$ is the name of the string variable from which the data will be written. String$ must end in CHR$(0).

	Result = 0 if no error or 1 if an error occurred.

DLOCK

format: CALLDLL#ddlls, “DLOCK”, filenumber AS short, position AS long, count AS long, result AS short

	Issues a network record lock on the number of bytes specified. Mainly used in a random access file. Attempting to lock, read or write to these bytes results in an error.

	Filenumber is the number assigned to the opened file.

	Position is the number of bytes from the start of the file where the locked data begins. For a random access file this is the RecordNumber*RecordLength. 0=start of the file.

	Count is the number of bytes locked. For a random access file this is usually the length of a record or a group of records being altered.

	Result = 0 if no error or 1 if an error occurred.

DUNLOCK

format: CALLDLL#ddlls, “DUNLOCK”, filenumber AS short, position AS long, count AS long, result AS short

	Removes a network record lock issued with DLOCK Only returns an error if the bytes have not been locked.

	Filenumber is the number assigned to the opened file.

	Position is the number of bytes from the start of the file where the locked data begins. For a random access file this is the RecordNumber*RecordLength. 0=start of the file.

	Count is the number of bytes locked. For a random access file this is usually the length of a record or a group of records being altered.

	Result = 0 if no error or 1 if an error occurred.

	Note: This command must be called before closing the file.

DFLUSH

format: CALLDLL#ddlls, “DFLUSH”, filenumber AS short, result AS void

	Forces any data remaining in the DLLs buffers to be written to the disk or caching system.

	Filenumber is the number assigned to the opened file.

	Result is always 0.

	Note: CLOSE, DLOCK and DUNLOCK automatically flush when issued.

DLOCKWAIT

format: CALLDLL#ddlls, “DLOCKWAIT”, filenumber AS short, position AS long, count AS long, result AS short

	Works the same as DLOCK but waits if an error occurs while locking. These errors usually mean the bytes are already locked by another computer. Every 3 seconds, Lockwait retries to lock and continues until the lock has been removed or after 25 attempts. DLOCK does not retry and returns an error immediately.

	Parameters are identical to DLOCK.

DCLOSE

Format: CALLDLL#ddlls, “DCLOSE”, filenumber AS short, result AS short

	Closes an open file. Will only close a file opened using the functions DOPENI, DOPENO, DOPENR or DOPENB.

	Filenumber is the number assigned to the opened file.

	result is 0 if successful or not-zero if an error occured.

LOCK

format: CALLDLL#ddlls, ”Lock”, filehandle AS short, position AS long, count AS long, result AS short

	Performs the same job as DLOCK but on an file opened via the API _Lopen function. Lock is intended to be used in conjunction with other disk API calls such as SetErrorMode, _Llseek, _Lread, _Hread, _Lwrite, _Hwrite and _Lclose.

	filehandle is the Windows filehandle returned by _Lopen. This handle is not the number used by DLOCK, which is the open file’s number (not handle).

UNLOCK

format: CALLDLL#ddlls, “Unlock”, filehandle AS short, position AS long, count AS long, result AS short

	Works the same as DUNLOCK but for files opened with _Lopen.

	filehandle is the Windows filehandle returned by _Lopen. This handle is not the number used by DLOCK, which is the open file’s number (not handle).

FILEHANDLE

format: CALLDLL#cmds, “Filehandle”, filenumber AS short, result AS short

	Returns the actual file handle value assigned by Windows when the file was opened.

	Filenumber is the number assigned to the opened file.

	Result= the file handle value.

CHDRIVE

format: CALLDLL#ddlls, “Chdrive”, dr AS short, result AS void

	Changes the current drive.

	dr is a value from 1 to 16 which correspond to drives A to P. Example: 3= C: drive.

PATH

format: CALLDLL#ddlls, “Path”, dr AS short, result$ AS ptr, result AS short

	Returns the current path.

	dr is a value from 0 to 26 where 0= the current drive and 1 to 26 drives A to Z.

	result$ is a null-terminated string that will hold the pathname returned. Initialise the string with SPACE$(80)+CHR$(0) before calling.

	result is the length of the actual string returned.

	result$ = LEFT$(result$, result) produces the final resulting path.

==

FONT FUNCTIONS

The font functions can be used to specify a font for any window object, such as buttons and

textboxes. In addition to the font, the height, width and style of the font can be set as well. These

functions can be used with LB’s own objects provided you get the handle via HWND.

CFONT

format: CALLDLL#ddlls, “Cfont”, handle AS short, parameter$ AS ptr, result AS short

	This command specifies a font and its properties.

	handle is the window handle returned by LB’s HWND function -- i.e. Handle=HWND(#window.object).

	parameter$ is a string that contains the font information (see below)

	The result is a value, which is the handle of the font. This value should be retained so that Windows resources dedicated to this font can be released when finished (see Freefont).

	Parameter$ is a string that has the following structure: “fontname, width, height, IUB3” Fontname is the name of the font such as ARIAL or TIMES, etc. Width and Height are numeric values generally divisible by 8 but not always. Height is usually twice the width but again doesn’t have to be. (Experiment!) The last section is optional and can be omitted if the font is to be standard. Including the letter “I” specifies Italic. “U” is underlined. “B” is bold and is followed by a number from 0 to 9. If I, U or B is not present that property is not active. Note: commas must separate each section in the parameter string.

	Note: Cfont uses Windows resources (memory). You must release the font (FreeFont) before closing your program.

FREEFONT

format: CALLDLL#ddlls, “Freefont”, fnt AS short, result AS void

	Releases a font in memory previously set up by Cfont.

	fnt is the value returned by Cfont.

==

PRINTER FUNCTIONS

This set of functions can be used for controlling printout. A limited set of graphics and text

functions are provided.

PRINTERDIALOG

format: CALLDLL#ddlls, “PrinterDialog”, handle AS short, result AS short

	This calls up Windows’ common printer dialog box. It is used to change printers and specify other properties.

	handle is the handle of the window from which the dialog is being called. Handle is returned by LB’s HWND function.

	Result is a Device Context value and is used as part of the printout.

PRINTERDC

format: CALLDLL#ddlls, “Printerdc”, result AS short

	This function opens a printer device context in order to perform Windows printer output. It can be used in cases where PrinterDialog is not required.

	Result is the Device Context value.

BEGINPRINT

format: CALLDLL#ddlls, “Beginprint”, dc AS short, jobname$ AS ptr, result AS void

	This function starts the printing process by assigning a device context and print job name (which is essentially a filename).

	dc is the Device Context value returned by the PRINTERDIALOG or PRINTERDC functions.

	jobname$ is the name assigned to the print job. It must be no longer than 8 characters.

LFONT

format: CALLDLL#ddlls, “Lfont”, parameter$ AS ptr, result AS short

	Lfont is used to specify the font for printout.

	Parameter$ is identical to the one used in Cfont (see above).

	Result is a font handle value and must be used with Freefont.

LTEXT

format: CALLDLL#ddlls, “Ltext”, x AS short, y AS short, text$ AS ptr, result as void

	Ltext writes text to a printout page.

	X, Y specify the coordinates on the page where to print the text.

	Text$ is a string containing the text to be printed.

	Note: This function can also print text on normal windows.

LCIRCLE

format: CALLDLL#ddlls, “LCircle”, x AS short, y AS short, r AS short, result AS void

	Lcircle draws a circle.

	X, Y specify the coordinate of the centre of the circle.

	R is the radius.

LLINE

format: CALLDLL#ddlls, “Lline”, x1 AS short, y1 AS short, x2 AS short, Y2 AS short, result AS void

	This function draws a line between X1,Y1 and X2,Y2.

ENDPRINT

format: CALLDLL#ddlls, “Endprint”, dc AS short, result AS void

	Endprint finishes printing by closing the document file being printed and freeing the device context.

	dc is the Device Context value returned by the PRINTERDIALOG or PRINTERDC functions.

PAGEFEED

format: CALLDLL#ddlls, “PageFeed”, result AS void

	This forces a page feed on the printer. It should be used before ending a print job.

ABORTPRINT

format: CALLDLL#ddlls, “AbortPrint”, result AS void

	Used to cancel a printjob before it is done. Must be entered before ENDPRINT.

COMMAND SEQUENCE FOR PRINTING

The proper sequence of commands for printouts is:

1.	PRINTERDIALOG or PRINTDC to get the printout device context

2.	BEGINPRINT to specify the device context and printjob name

3.	LFONT to specify a font. Repeat as required for changing fonts but keep track of the returned handles.

4.	LTEXT, LCIRCLE, LLINE to draw text, circles and lines

5.	PAGEFEED where required to end printing on a page

6.	FREEFONT to release any fonts specified at the end of the job

	(You may need to repeat this.)

7.	PAGEFEED to eject the last page

8.	ENDPRINT to release the device context and complete the job

==

MOUSE FUNCTIONS

HIDEMOUSE

format: CALLDLL#ddlls, “HideMouse”, result AS void

	Hides the mouse cursor.

SHOWMOUSE

format: CALLDLL#ddlls, “ShowMouse”, result AS void

	Shows the mouse if hidden.

==

DATE AND TIME FUNCTIONS

These functions deal with the date and time differently than does LB. Both the date and time can be

returned and set.

SETDATE

format: CALLDLL#ddlls, “Setdate”, date$ AS ptr, result AS void

	Sets the computer’s date clock. Format for the date string is: “DD.MM.YYYY” (rest of the world) or “MM/DD/YYYY” (US format), you can use either. Example: “02.05.1997”

SETTIME

format: CALLDLL#ddlls, “Settime”, time$ AS ptr, result AS void

	Sets the computer’s clock. Format for the time string is: “HH:MM:SS”. Example: “23:50:39”

GETDATE

format: CALLDLL#ddlls, “Getdate”, mode AS short, d$ AS ptr, result AS void

	Retrieves the date in the same format as Setdate. Mode determines the style of the date string returned. 0=“DD.MM.YYYY” and non 0 = “MM/DD/YYYY”. The string passed to this function must be exactly 10 characters long + a chr$(0) on the end -- i.e. d$ = SPACE$(10) + CHR$(0)

GETTIME

format: CALLDLL#ddlls, “Gettime”, t$ AS ptr, result AS void

	Retrieves the time in the same format as Gettime. The string passed to this function must be 8 characters long + a chr$(0) on the end.

==

MISCELLANEOUS FUNCTIONS

BIN

format: CALLDLL#ddlls, “Bin”, value AS long, places AS short, result$ AS ptr, result AS short

	Returns the binary representation of the value specified.

	value is a whole number.

	places is the number of places to be represented and is a value from 1 to 33.

	result$ is a string that will contain the resulting binary image. It must be initialised with SPACE$(length) where the length is the number of places or more. It must be terminated in CHR$(0) -- i.e. result$ = SPACE$(20) + CHR$(0).

	result is the actual length of the string returned. It will be equal to or less than places.

DELAY

format: CALLDLL#ddlls, “Delay”, value AS short, result AS void

	Causes a delay of value seconds.

EVEN

format: CALLDLL#ddlls, “Even”, value AS long, result AS short

	Determines if a whole number is even.

	result is -1 if even or 0 if odd.

ODD

format: CALLDLL#ddlls, “Odd”, value As long, result AS short

	Determines if a whole number is odd.

	result is -1 if odd or 0 if even.

MOD

format: CALLDLL#ddlls, “Mod”, value1 AS long, value2 As long, result AS long

	Calculates the modulo of a integer number based on the second integer -- i.e. value1 MOD value2.

INVERT

format: CALLDLL#ddlls, “Invert”, x AS short, y AS short, w AS short, h AS short, result AS void

	Inverts the colours of a rectangular area of the screen.

	X,Y is the upper left corner

	W,H is the width and height.

	Coordinates are relative to the entire desktop, not the window.

SOUND

format: CALLDLL#ddlls, “Sound”, freqency AS long, duration AS long, result AS void

	Makes a tone at the specified frequency for the indicated duration.

	frequency is in Hertz.

	duration is in ticks or 1/18th of a second.

==

GENERAL WINDOW FUNCTIONS

The functions below are used to manipulate windows. These mimic some API functions.

SETWINDOWSTYLE

format: CALLDLL#ddlls, “SetWindowStyle”, handle AS short, style AS long, result AS void

	SetWindowStyle can be used to change the style of a window or object.

	handle is the value returned by HWND for the window or object.

	Style is a number composed of _WS_ Windows constants that specify the style. The constants are ORd together -- i.e. style = _WS_BORDER OR _WS_CHILD OR _WS_TABSTOP.

GETWINDOWSTYLE

format: CALLDLL#ddlls, “GetWindowStyle”, handle AS short, result AS long

	This function returns the style value of the window specified by the handle.

CREATEWINDOW

format: CALLDLL#ddlls, “CreateWindow”, handle AS short, object$ AS ptr, title$ AS ptr, id as short, x AS short, y AS short, w AS short, h AS short, style as long, class AS long, result AS short

	CreateWindow mimics the API function of the same name. It is used to create objects and is therefore very powerful and complex. This function is included here to permit access to some properties not easily available through LB. Use with care! Use the API function DestroyWindow to remove the object.

	handle is the handle of the window on which the object is to be displayed.

	object$ is a string with one of the following terms: BUTTON, COMBOBOX, EDIT, LISTBOX, SCROLLBAR or STATIC.

	title$ is the text to be displayed. Set to null for no text.

	id is a unique number from 1 upwards that you assign to each object. Currently the ID is only used with one command but may be used in future for others. Make sure each object created as a unique ID.

	X, Y is the position of the object.

	W, H is the width and height of the object.

	style is the Windows style specifier. It consists of Windows inline constants ORd together. Please refer to an API manual or help file for this information.

	class can be a pointer to a WNDCLASS structure for use with RegisterClass. For normal operation, this can be set to 0.

	result is the handle of the created object.

	Example: to create a simple textbox which allows word-wrapped multiline text entry:

		handle = HWND(#window)

		object$ = “EDIT”

		title$ = “”

		x = 25 : y = 30 : w = 170 : h = 64 : id=100

		param = _ES_MULTILINE OR _WS_BORDER OR _WS_CHILDWINDOW OR

			_WS_TABSTOP OR _WS_VISIBLE

	CALLDLL#ddll, “CreateWindow”, handle AS short, object$ AS ptr, title$ AS ptr, id AS short, x AS short, y AS short, w AS short, h AS short, param AS long, 0 as long, result AS short

CLOSE OBJECT

Every object created by DEANSLIB must be closed before the parent window is closed!!

Failure to do this can cause an error upon exiting your program. You must use this function! It is

used on conjunction with the editbox, listbox and combobox objects detailed below.This command

is used to close each object.

CALLDLL#ddll,”CloseObject”,_

		handle as short,_			‘handle of the object to be closed

	 result as void				‘nothing is returned

REGISTER CLASS

This function is for experienced programmers. It is used to register a WNDCLASS structure for use

with CreateWindow above.

CALLSLL#ddll, “RegisterClass”,

		wc AS long			‘address pointer to WNCLASS structure

		result as short			‘0 or -1

SETTEXT

Sends text to the object specified by the handle.

format: CALLDLL#ddll, “SetText”, handle AS short, text$ AS ptr, result AS void

	handle is the object’s handle returned by CreateWindow or HWND.

	text$ is the text to be sent. It will replace any text in the object.

GETTEXTLENGTH

Returns the length of text from an object specified by the handle.

format: CALLDLL#ddlls, “GetTextLength”, handle AS short, result AS short

	handle is the object’s handle from CreateWindow or HWND.

	result is the number of characters in length of the text.

GETTEXT

Retrieves text from an object.

format: CALLDLL#ddlls, “GetText”, handle AS short, text$ AS ptr, result AS short

	handle is the object’s handle from CreatWindow or HWND.

	text$ is a blank string which has at least as many spaces in it as you expect to be returned. This string must be terminated by CHR$(0). It can be created via text$ = SPACE$(length) + CHR$(0).

	result is the actual length of the string returned. Use text$ = LEFT$(text$,result) which will strip off any right spaces and the character zero at the end.

SET FOCUS

This sets the focus to the object specified. It works with all objects and windows. It is based on the API call SetFocus which can be used instead.

CALLDLL#ddll, “SetFocus”,_

	handle AS short,_			‘handle of object

	result AS void				‘nothing returned

==

EDITBOX OBJECT

An Editbox is similar to Liberty Basic’s (LB) Textbox but with some differences and additional features.

CREATING AN EDITBOX

Editboxes can be created using the CreateWindow function described earlier. Object$ must be set to “EDIT”. The return value from the function is the handle of the editbox object.

Alternately, you can use the special EditBox function:

CALLDLL#ddll, “EditBox”,

	whandle AS short,_			‘handle of the window

	title$ AS ptr,_				‘text to go into the editbox

	id AS short,_				‘unique ID value

	x AS short,_				‘x coordinate

	y AS short,_				‘y coordinate

	w AS short,_				‘width

	h AS short,_				‘height

	style AS long,_			‘editbox style value

	result AS short			‘handle of the editbox

You must include a style parameter for the editbox. This is a numeric value that specifies properties. Style is procued by ORing together a string of style parameters -- i.e. style = _ES_MULTILINE OR _WS_TABSTOP produces a standard multi-line editbox that does not have scrollbars. The style elements are also known as “inline constants”. In LB, these are prefixed by an underscore character.

_WS_VISIBLE OR _WS_CHILDWINDOW do not have to be included in the style (as they do with CreateWindow) as these are automatically added.

The following style constants are available for use in editboxes:

_ES_LEFT			sets the text left justified in the edit field.

_ES_CENTER		centres the text within a multi-line edit field.

_ES_RIGHT			sets the text right justified within a multi-line edit field.

_ES_MULTILINE		defines a multi-line edit field.

_ES_UPPERCASE		converts all characters to uppercase as they are entered

_ES_LOWERCASE		converts all characters to lowercase.

_ES_PASSWORD		displays all entered characters as asterisk.

_ES_AUTOVSCROLL	scrolls the text one page up when the user presses the Enter key on

				the last line

_ES_AUTOHSCROLL	Automatic vertical scrolling if text doesn’t fit

_ES_NOHIDESEL		makes the selected entry in an edit field permanently visible.

_ES_OEMCONVERT	converts characters from ANSI into OEM and back

_WS_BORDER		creates a thin border

_WS_CAPTION		creates a thick border

_WS_CHILDWINDOW	creates an editbox that is part of the window -- always include this!

_WS_DGLFRAME		creates a double border

_WS_HSCROLL		addes a horizontal scroll bar.

_WS_MINIMIZE		sets editbox initially to minimized

_WS_OVERLAPPEDWINDOW creates an editbox with a titlebar, border and size controls

_WS_TABSTOP		sets the TAB key to recognize control in dialog windows

_WS_THICKFRAME		makes a thick border

_WS_VISIBLE		sets editbox to initially visible -- always use this!

_WS_VSCROLL		adds a vertical scroll bar

2048				Sets the editbox to readonly -- you can’t write to it 							(_ES_READONLY, use the number 2048 instead)

4096				Tells the editbox when it is in a dialog that Enter makes a new

				line instead of selecting a button. (_ES_WANTRETURN, use

				the number 4096 instead)

One possible combinations is:

_WS_BORDER OR _ES_MULTILINE OR _ES_AUTOHSCROLL OR _WS_VSCROLL OR _ES_NOHIDESEL

which creates a multi-line editbox with a vertical scrollbar but not a horizontal one. The editbox is inside a border and text entered is automatically word-wrapped.

The editbox is created after the window is opened.

The functions below are used to control the editbox.

CLEAR TEXT

This function clears all text in the Editbox.

CALLDLL#ddll, “edcls”,_

	handle AS short,_			‘handle of the editbox

	result AS void				‘nothing is returned

PUT TEXT

Text can be put into an Editbox when it is created or added afterwards. Use the SetText function above to do this.

GET LENGTH OF TEXT

Use the GetTextLength function above to obtain the number of bytes of text in the editbox.

This function returns the length of all the text in the editbox. If it is multiline, then end of line characters (chr$(13)+chr$(10)) are also included in the value.

GET TEXT

Use the GetText function above to return all text from an Editbox. Example:

maxsize = largest length you think you may need	‘can be determined by GetTextLength

retstr$=SPACE$(maxsize) + CHR$(0)

CALLDLL#ddll,”GetText”,_

	handle AS short,_		‘handle of editbox or object

	retstr$ AS ptr,_		‘return string

	result AS short		‘number of characters returned

retstr$=LEFT$(retstr$,result)		‘strip off right unused characters

CHECK TO SEE IF TEXT HAS BEEN MODIFIED

This function returns a 0 if the text has not been modified or a non zero value if it has.

CALLDLL#ddll,”edgetmodify”,_

	handle AS short,_			‘editbox handle

	result AS short			‘0 if not modified, non zero if it has been

GET LENGTH OF A LINE OF TEXT

This function returns the length of a specified line in a multi-line editbox.

CALLDLL#ddll,”edgetlinelength”,_

	handle AS short,_			‘editbox handle

	line AS short,_			‘line number starting at 0

	result AS long				‘length of line (bytes)

GET ONE LINE OF TEXT

This function returns one line of text into a buffer string. You can call the above function to determine the space required in the buffer.

buffer$=SPACE$(spaceneeded) + CHR$(0)		‘make buffer

CALLDLL#ddll, “ edgetline”,_

	handle AS short,_			‘editbox handle

	line AS short,_			‘line number starting at 0

	buffer$ AS ptr,_			‘buffer string

	result AS long				‘number of characters returned

buffer$=LEFT$(buffer$,result)

GET NUMBER OF LINES OF TEXT

Returns the number of lines of text.

CALLDLL#ddll, “edgetlinecount”,_

	handle AS short,_			‘editbox handle

	result AS long				‘number of lines

GET HIGHLIGHTED SELECTION

Returns the text of a highlighted selection into a buffer string.

retstr$ = SPACE$(maximum size expected) + CHR$(0)

CALLDLL#ddll, “edgetselection”,_

	handle AS short,_			‘editbox handle

	retstr$ AS ptr,_			‘return string

	result AS short			‘number of characters returned

retstr$ = LEFT$(retstr$,result)

RESTRICT LENGTH OF TEXT THAT CAN BE ENTERED

Restricts the number of charactes that can be typed into an Editbox. Set to 0 for no limit.

CALLDLL#ddll, “edlimittext”,_

	handle AS short,_			‘editbox handle

	limit AS short,_			‘number of characters

	result AS void				‘nothing returned

GET CURSOR POSITION

This function returns the cursor position within the editbox. This position is the number of characters from the start, not an X,Y coordinate.

CALLDLL#ddll, “edgetcursorposition”,_

	handle AS short,_			‘editbox handle

	result AS short			‘cursor position returned

SET CURSOR POSITION

Sets the position of the cursor to the specified number of characters into the text.

CALLDLL#ddll, “edsetcursorposition”,_

	handle AS short,_			‘editbox handle

	position AS short,_			‘position specified

	result AS void				‘nothing returned

==

STATICTEXT OBJECT

CreateWindow can be used to create a statictext object which has properties different from those in LB. Like the EditBox function, _WS_VISIBLE and _WS_CHILDWINDOW constants must be included in the style in CreateWindow but do not have to be included in the function below.

Alternately, you can use the special StaticText function:

CALLDLL#ddll, “StaticText”,

	whandle AS short,_			‘handle of the window

	title$ AS ptr,_				‘text to go into the editbox

	id AS short,_				‘unique ID value

	x AS short,_				‘x coordinate

	y AS short,_				‘y coordinate

	w AS short,_				‘width

	h AS short,_				‘height

	style AS long,_			‘statictext style value

	result AS short			‘handle of the editbox

_SS_LEFT		left justified text (defalt). Text that extends beyond the right edge of the box

			is wrapped to the next line.

_SS_CENTER	Centers text within the horizontal width

_SS_RIGHT		right justifies text.

_SS_BLACKRECT	a filled rectangle with the colour of the window frames

_SS_GRAYRECT	a filled rectangle with the colour of the screen background

_SS_WHITERECT	a filled rectangle with the colour of the window background

_SS_BLACKFRAME	a rectangle with the frame of the same colour as the window frame

_SS_GRAYFRAME	a rectangle with the frame of the same colour as the screen background

_SS_WHITEFRAME	a rectangle with the frame of the same colour as the window background

_SS_SIMPLE		a rectangle containing one line of text

_SS_LEFTNOWORDWRAP	No word wrap is performed

_SS_NOPREFIX	Stops underbar instead of "&" character, shows "&"

_WS_BORDER	creates a thin border.

_WS_CAPTION	creates a thick border

_WS_CHILDWINDOW creates a child window

_WS_DGLFRAME	creates a double border

_WS_HSCROLL	creates a horizontal scroll bar that does nothing

_WS_TABSTOP	lets TAB work for this control -- use in dialog windows

_WS_THICKFRAME	a thick border

_WS_VISIBLE	makes control visible -- always use

_WS_VSCROLL	creates a vertical scroll bar that doesn’t work with Static

==

LISTBOX OBJECT

These are the controls for listboxes. Quite a few additional features are available over the standard LB listbox.

CREATING A LISTBOX

Use CreateWindow with object$ as “LISTBOX” or use the special function below:

CALLDLL#ddll, “ListBox”,

	whandle AS short,_			‘handle of the window

	title$ AS ptr,_				‘text to go into the editbox

	id AS short,_				‘unique ID value

	x AS short,_				‘x coordinate

	y AS short,_				‘y coordinate

	w AS short,_				‘width

	h AS short,_				‘height

	style AS long,_			‘listbox style value

	result AS short			‘handle of the editbox

If the listbox has a titlebar, then text$ goes into it. Otherwise text$ does not appear.

style can be any combination of the following ORd together:

_LBS_NOTIFY	sends an input message when an entry is selected

_LBS_SORT	alphabetically sorts entries in the list box

_LBS_MULTIPLESEL	after one selection (the entry is inverted) enables the user to make another

_LBS_HASSTRINGS	is used when the entries in a Listbox are strings

_LBS_USETABSTOPS	spaces data in entries that have tab characters

_LBS_NOINTEGRALHEIGHT	the size of the list box corresponds exactly to the window used by calling application

_LBS_MULTICOLUMN	specifies a multicolumn list box

_LBS_EXTENDEDSEL	specifies a list box where several items can be selected by using the combination of Shift key and a mouse click.

_LBS_STANDARD	creates a list box with the following control styles: LBS_NOTIFY, LBS_SORT, WS_VSCROLL, WS_BORDER

_WS_BORDER	makes a border

_WS_CAPTION	makes a title line; don’t use with WS_DLGFRAME

_WS_DGLFRAME	makes a double border and no title

_WS_ICONIC	initially displayed minimized

_WS_MAXIMIZE	maximize to full size of window full screen

_WS_MAXIMIZEBOX	include a maximize control

_WS_MINIMIZE	minimized, same as WS_ICONIC

_WS_MINIMIZEBOX	include a minimize control

_WS_OVERLAPPEDWINDOW	makes window with: WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU, WS_THICKFRAME

_WS_TABSTOP	makes the control respond to a Tab key in a dialog

_WS_THICKFRAME	makes a thick border, used to size the window

_WS_VISIBLE	makes the control visible

The following combination produces a standard, simple listbox. Entries are alphabetically sorted.

_LBS_STANDARD

HIGHLIGHT A SELECTED STRING

This function highlights a specific entry in the listbox based on a string. It is like LB’s “select string” command.

CALLDLL#ddll,”lbselectstring”,_

	handle as short,_			‘handle of the listbox object

	selstr$ as ptr,_				‘string to be highlighted

	result as short				‘index of the string that is highlighted or -1 if not

HIGHLIGHT AN ENTRY BY ITS INDEX

This function is like LB’s “selectindex” command. It highlights a listbox entry based on its index value. If you set the index value to -1, all items are deselected.

CALLDLL#ddll,”lbselectindex”,_

	handle as short,_			‘handle of the listbox object

	index as short,_			‘index to be highlighted with 0 at the top

	result as void				‘does not return a value

RETURN HIGHLIGHTED STRING

This function returns the string that is highlighted. Like all DLL functions that returns strings, you must first create an empty string that is going to receive the data. The result is the number of characters returned into the string. This function is similar to LB’s “selection?”.

retstr$=SPACE$(yourspecifiedlength) + CHR$(0)

CALLDLL#ddll,”lbselection”,_

	handle as short,_			‘handle of the listbox object

	retstr$ as ptr,_				‘string into which the results will be returned

	result as short				‘length of the string returned

RETURN INDEX OF THE HIGHLIGHTED ENTRY

This function is similar to LB’s “selectionindex?”. It returns the index value of the highlighted entry in the listbox. If there is no selected item, then -1 is returned.

CALLDLL#ddll,”lbselectionindex”,_

	handle as short,_			‘handle of the listbox object

	result as short				‘the index

LOCATE AN ENTRY IN THE LISTBOX

This function searches the list to find the first occurance of an entry that starts with the string you specify. It is not an exact match search but a “begins with” search. The index of the entry is returned or -1 if nothing was found.

CALLDLL#ddll, “lbfindstring”,_

	handle as short,_			‘handle of the listbox

	s$ as ptr,_				‘string you are searching for

	result as short				‘index of the entry found

RETURN TEXT OF AN ENTRY

Lbgettext returns in a string the text of the entry specified by an index.

retstr$=SPACE$(yourlength)+CHR$(0)	‘empty return string

CALLDLL#ddll,”lbgettext”,_

	handle as short,_			‘handle of the listbox

	entry as short,_			‘index of the entry to be returned

	retstr$ as ptr,_				‘string to receive the entry

	result as short				‘length of the string returned

retstr$=LEFT$(retstr$,result)			‘trimmed final string

DELETE AN ENTRY FROM THE LIST

LbDelstring deletes an entry from the list based on its index.

CALLDLL#ddll, “lbdelstring”,_

	handle as short,_			‘handle of the listbox

	index as short,_			‘index of the entry to be deleted

	result as short				‘number of item remaining in the listbox

ADD AN ENTRY TO THE LIST

Lbaddstring adds a string to the list.

CALLDLL#ddll,”lbaddstring”,_

	handle as short,_			‘handle of the listbox

	s$ as ptr,_				‘string to be added

	result as short				‘the index of the new entry

INSERT AN ENTRY TO THE LIST

This function adds a string to the list at specified index position.

CALLDLL#ddll, “lbinsertstring”,_

	handle as short,_			‘handle of the listbox

	index as short,_			‘index the entry is to have

	s$ as ptr,_				‘string to be added

	result as void				‘nothing is returned

PUT A DIRECTORY INTO A LISTBOX

Lbdir fills a listbox with the contents of a disk directory. The string dir$ contains a filespec such as “*.*“ or “c:\lbasic*.bas”

CALLDLL#ddll,”lbdir”,_

	handle as short,_			‘handle of the listbox

	dir$ as ptr,_				‘string containing a filespec

	result as short				‘number of entries in the listbox

RETURN THE NUMBER OF ENTRIES IN A LISTBOX

Lbgetcount returns the number of entries in a listbox.

CALLDLL#ddll,”lbgetcount”,_

	handle as short,_			‘handle of the listbox

	result as short				‘number of entries

HAS AN ENTRY BEEN SELECTED?

This function determines if a particular indexed entry has been selected. It returns a 0 if the entry has not been selected, a value greater than 0 if it has or a -1 if there was an error.

CALLDLL#”lbgetsel”,_

	handle as short,_			‘handle of the listbox

	index as short,_			‘index being tested

	result as short				‘value returned

GET THE NUMBER OF CHARACTERS IN A ENTRY

Returns the number of characters in a string in the indexed entry.

CALLDLL#,”lbgettextlen”,_

	handle as short,_			‘handle of the listbox

	index as short,_			‘index being checked

	result as short				‘value returned

PUTS SELECTED ITEM AT TOP

This function scrolls the list until the currently selected item appears at the top.

CALLDLL#ddll,“lbsettopindex”,_

	handle as short,_			‘handle of the listbox

	index as short,_			‘index to be shown at the top

	result as void				‘does not return a value

CLEARS A LISTBOX

This function clears everything out of a listbox.

CALLDLL#ddll,”lbclear,”_

	handle as short,_			‘handle of the listbox

	result as void				‘does not return a value

SET TAB STOPS

Lbsettabstops is used for creating single-entry column-style listboxes. This is not to be confused with multi-column listboxes, which have single entries spread across several columns. A tab-stop listbox has one main list but each entry can have two or more parts, each spaced out. A list of numbers with their words in column format it looks like:

	1	one	first

	2	two	second

	3	three	third

	4	four	fourth

Each line is one entry, and each part is separated by TAB characters (CHR$(9)). So an entry that is to be added to the listbox would look like: s$=“1”+CHR$(9)+”one”+CHR$(9)+”first”. Every entry should have the same number of tab characters.

Lbsettabstops is called after creating the listbox but before loading a listbox with data. You pass one string that contains a set of numbers separated by commas. The numbers are each column’s position, starting with the second colum. s$=“20,50,70” would specify four fields in each entry being at the 1st, 20th, 50th and 70th position. (These are dialog units or about one quarter the width of a character.)

Each string then added to the listbox will position

CALLDLL#dll,”lbsettabstops”,_

	handle as short,_			‘handle of the listbox

	s$ as ptr,_				‘string containing the tab stop positions

	result as void				‘does not return a value

LOAD AN ARRAY INTO A LISTBOX

While it is not possible to loan a whole array into a DEANSEXT listbox as is done with a normal LB listbox, it is possible to simulate this by putting the contents of an array into a single string. Each element of the array is separated by a vertical bar character -- “|”. Example: an array contained the names of numbers: a$(1)=“one” : a$(2)=“two” : a$(3)=“three” : a$(4)=“four”. A string containing these to be passed to the listbox is made by a routine like:

	s$=“”			‘empty first

	for i=1 to n-1		‘n=number of elements in array

	 s$=s$+a$(i)+”|”	‘add each element and end with a “|”

	next I

	s$=s$+a$(n)		‘add last element but don’t put “|” after it (optional)

You then pass s$ to the lbload function.

Note: if the listbox already has entries, these will be added to it. If you want to reload a listbox, clear it first using lbclear then use lbload.

CALLDLL#ddll,”lbload”,_

	handle as short,_			‘handle of the listbox

	s$ as ptr,_				‘string containing array entries

	result as short				‘number of entries put into listbox

You can also transfer the list in a listbox to an array by doing the following steps:

	1. DIM your array, say A$()

	2. get the number of entries in the lisbox with lbgetcount

	3. Loop through each entry and use lbgettext, trimming each return string

GET MULTIPLE LISTBOX ENTRIES

A listbox created with the LBS_MULTIPLESEL style allows users to highlight more than one entry. This function can be used to return all the selected entries. You must create a return string that will hold all the entries. Each entry has a “|” character at the end of it, including the last entry”.

retstr$=SPACE$(thelengthyouwant)+CHR$(0)

CALLDLL#ddll, “lbgetmultilist”,_

	handle as short,_			‘handle of the listbox

	retsr$ as ptr,_				‘return string

	result as short				‘the length of the return string

retstr$=LEFT$(retstr$,result)			‘the trimmed string

SET DIRECTORY INTO DIRLISTBOX

This function will set a special directory into a listbox. It includes subdirectories and drives, listed within square brackets. Drives are listed as [-c-]. Note: the handle is for the window or dialog not the special listbox itself. And this is the only function that requires the listbox’s ID value. This is the exception!

CALLDLL#ddll,”SetDirList”,_

	whandle as short,_			‘window handle

	id as short,_				‘listbox Id value

	path$ as ptr,_				‘string with full path

	result as void

TRANSFERING ENTRIES IN A STRING TO AN ARRAY

The following code can be used to take entries in the return string and put them into an array:

	DIM a$(whatever)

	n=0					‘start number of elements at 0 (none)

	WHILE len(retstr$)>0			‘loop while we have data

	 p=INSTR(retstr$,”|”,1)		‘look for “|”

	 n=n+1				‘increment element counter

	 a$(n)=left$(retstr$,p-1)		‘get entry

	 restr$=mid$(restr$,p+1)		‘strip off left bit

	WEND

MATCHING ARRAY ENTRIES WITH LISTBOX ENTRIES

A listbox created with the LSB_SORT or LSB_STANDARD style will automatically sort entries added to it in alphabetical order. This may not be the same order as your data array. After searching for and locating a particular entry in a listbox, you will need to loop through your array to find that entry:

f$= contains the entry from the listbox, perhaps found by lbselectstring.

flag=-1

FOR i=0 to n				‘n= number of elements in your array, starting at 0

 IF a$(i)=f$ THEN			‘have we found it?

 flag=i				‘yes, set flag equal to the element number

 i=n					‘do this to exit the loop cleanly (don’t use GOTO)

 ENDIF

NEXT i

When finished, flag will contain the number of the element of the array that matches the returned string or it will be -1 if nothing was found. If your arrays start at 1, change to flag=0 and FOR i=1 to n.

(Why do so many programmers use I, J and K as simple loop counters? Goes back to the days of Fortran where these variables were used to hold simple integer values. You got into the habit of using these letters in loops.)

==

COMBOBOX CONTROLS

Comboboxes are similar to listboxes but also have an editbox control. Many of the controls for comboboxes are therefore almost the same as for listboxes. One difference between LB comboboxes and the ones here is that the contents of the editbox can be read as something different to that in the list.

CREATING A COMBOBOX

Use CreateWindow with object$ set to “COMBOBOX” or the function below:

CALLDLL#ddll, “ComboBox”,

	whandle AS short,_			‘handle of the window

	title$ AS ptr,_				‘text to go into the editbox

	id AS short,_				‘unique ID value

	x AS short,_				‘x coordinate

	y AS short,_				‘y coordinate

	w AS short,_				‘width

	h AS short,_				‘height

	style AS long,_			‘editbox style value

	result AS short			‘handle of the editbox

Style can be any combination of the following ORd together:

_CBS_SIMPLE	describes a list box which is displayed at all times.

_CBS_DROPDOWN	combobox with drop down scroll area

_CBS_DROPDOWNLIST	the selection window is static and always from the list

_CBS_AUTOHSCROLL	automatically scrolls the text in the edit control

_CBS_SORT	automatically sorts all entries in the combo box.

_CBS_HASSTRINGS	is used when the Combobox entries are strings

_WS_ICONIC	initially displayed minimized

_WS_MAXIMIZE	maximize to full size of window full screen

_WS_MINIMIZE	minimized, same as WS_ICONIC

_WS_TABSTOP	makes the control respond to a Tab key in a dialog

_WS_THICKFRAME	makes a thick border, used to size the window

A standard combobox is produced by:

_CBS_HASSTRINGS OR _CBS_DROPDOWN OR _CBS_AUTOHSCROLL OR _CBS_SORT

HIGHLIGHT AN ENTRY IN THE LISTBOX

Highlights the item in the listbox that corresponds to sr$ and transfers it to the editbox. Similar to LB’s “select string” command. Result is the index of the item highlighted or -1 if there was an error.

CALLDLL#ddll,”cbselectstring”,_

	handle as short,_			‘handle of the combobox

	s$ as ptr,_				‘string of entry to be highlighted

	result as short				‘returns the index of the item selected

HIGHLIGHT ENTRY BASED ON INDEX

This highlightes an entry and transfers it to the editbox based on the index value. Similar to LB’s “selectindex” command. If the index is set to -1, all entries are deselected.

CALLDLL#ddll, “cbselectindex”,_

	handle as short,_			‘handle of the combobox

	index as short,_			‘index to be selected

	result as void

RETURN ENTRY IN THE EDITBOX

Cbselection returns the entry that is in the editbox (not necessarily the one highlighted in the list). You must set up a return string for this function. The result is the length of the string returned.

retstr$=SPACE$(whateveryouwant)+CHR$(0)	‘create large return string

CALLDLL#ddll,”cbselection”,_

	handle as short,_			‘handle of the combobox

	retstr$ as ptr,_				‘the return string

	result as short				‘length of the returned data

retstr$=LEFT$(retstr$,result)			‘trim off excess space

RETURN INDEX OF SELECTED ENTRY

This function returns the index of the entry in the editbox. If there is no selected item, -1 is returned.

CALLDLL#ddll,”cbselectionindex”,_

	handle as short,_			‘handle of the combobox

	result as short				‘return the index number

LOAD AN ARRAY INTO A COMBOBOX

This function is similar to lbload in that it copies the contents of an array (which is in one string with elements separated by “|” characters) into a combobox.

CALLDLL#DDLL,”cbload”,_

	handle as short,_			‘handle of the combobox

	s$ as ptr,_				‘string with array to load

	result as short				‘number of elements loaded

COPY COMBOBOX ENTRIES INTO A STRING

This function transfers the entire contents of a combobox list into a return string. Each element is separated by a “|” character.

retstr$=SPACE$(lengthyouwant)+CHR$(0)

CALLDLL#ddll,”cblbtoarray”,_

	handle as short,_			‘handle of the combobox

	retstr$ as ptr,_				‘return string

	result as short				‘length of string

retstr$=LEFT$(retstr$,result)

If you wish to transfer this into an array, please see the entry for “Transferring Entries in a String to an Array” in the Listbox section above.

RETURN HIGHLIGHTED LISTBOX ENTRY

This function returns an entry highlighted in the listbox, not what is in the editbox. A return string is required.

retstr$=SPACE$(lengthyouwant)+CHR$(0)	‘set up the return string

CALLDLL#dll,”cbgetlbtext”,_

	handle as short,_			‘handle of the combobox

	index as short,_			‘index of entry to be returned

	retstr$ as ptr,_				‘return string

	result as short				‘length of string returned

retstr$=LEFT$(retstr$,result)

FIND AN ENTRY IN THE COMBOBOX

Searches a combobox for a string starting with s$. Returns the index of the first item found or -1 if not found.

CALLDLL#ddll,”cbfindstring”,_

	handle as short,_			‘handle of the combobox

	s$ as ptr,_				‘string being searched for

	result as short				‘index of entry found

DELETE AN ENTRY

Deletes one item from the listbox based on its index. Returns the number of items remaining.

CALLDLL#ddll,”cbdelstring”,_

	handle as short,_			‘handle of the combobox

	index as short,_			‘index of entry to be deleted

	result as short				‘number of entries remaining

ADD AN ENTRY

Adds one entry to a combobox. Returns the index of where the entry has been added.

CALLDLL#ddll,”cbaddstring”,_

	handle as short,_			‘handle of combobox

	s$ as ptr,_				‘string to be added

	result as short				‘index position of added string

INSERT AN ENTRY

Inserts a string into the listbox of a combobox at a specified index position.

CALLDLL#ddll,”cbinsertstring”,_

	handle as short,_			‘handle of the combobox

	index as short,_			‘index position for insertion

	s$ as ptr,_				‘string to be inserted

	result as void				‘no result

PUT A DIRECTORY INTO A COMBOBOX

Cbdir fills a listbox with the contents of a disk directory. The string dir$ contains a filespec such as “*.*“ or “c:\lbasic*.bas”

CALLDLL#ddll,”cbdir”,_

	handle as short,_			‘handle of the combo

	dir$ as ptr,_				‘string containing a filespec

	result as short				‘number of entries in the combobox

GET NUMBER OF ENTRIES IN COMBOBOX LIST

Returns the number of items in the listbox part of a combobox.

CALLDLL#ddll,”cbgetcount”,_

	handle as short,_			‘handle of the combobox

	result as short				‘number of entries

GET LENGTH OF ENTRY

Returns the number of characters in a string in the indexed entry in the listbox of a combobox.

CALLDLL#ddll,”cbgetlbtextlen”,_

	handle as short,_			‘handle of the combobox

	index as short,_			‘index of entry in list

	result as short				‘length of entry

CLEAR A COMBOBOX

Clears the contents of the whole combobox.

CALLDLL#ddll,”cbclear”,_

	handle as short,_			‘handle of the combobox

	result as void				‘nothing is returned

LIMIT ENTRY IN EDITOBOX

This limits the number of characters that can be typed in the editbox portion of a combobox.

CALLDLL#ddll,”cblimittext”,_

	handle as short,_			‘handle of the combobox

	n as short,_				‘number of characters

	result as void				‘nothing is returned

SHOW OR HIDE THE DROPDOWN LIST

This shows or hides the dropdown list of a combobox. Set to 0 to hide or -1 to show.

CALLDLL#ddll,”zcbshowdropdown”,_

	handle as short,_			‘handle of the combobox

	n as short,_				‘value of 0 or -1

	result as void				‘nothing is returned

�
SUMMARY OF DEANSLIB.DLL FUNCTIONS

This is a summary of all the functions in DEANSLIB.DLL. The format presented here is not what is entered in Liberty Basic but rather a simplistic representation. Variables are suffixed by symbols that mean: % (short), & (long), $ (string or ptr), ~(void). The last variable is the result.

Functionname	purpose	Variables

Disk Functions:

Dshare	is share present?		%

Dopeni	open for input only	filenumber%, filename$, result%

Dopeno	open output only	filenumber%, filename$, result%

Dopenr	open random 	filenumber%, filename$, recordlength%, result%

Dseek	locate inside file	filenumber%, position&, result%

Dreadi	read short integer	filenumber%, result%

Dreadl	read long integer	filenumber%, result&

Dreads	read string	filenumber%, returnstring$, length%, result$%

Dwritei	write short integer	filenumber%, value%, result%

Dwritel	write long integer	filenumber%, value&, result%

Dwrites	write string	filenumber%, string$, length%, result%

Dinput	lineinput	filenumber%, returnstring$, result%

Dprint	sequential output	filenumber%, string$, result%

Dlock	record lock	filenumber%, position&, count&, result%

Dunlock	record unlock	filenumber%, position&, count&, result%

Dflush	flush disk buffer	filenumber%, result~

Dlockwait	record lock waiting	filenumber%, position&, count&, result%

Dclose	close file	filenumber%, result%

lock		record lock for API	filehandle%, position&, count&, result%

unlock	record unlock for API	filehandle%, position&, count&, result%

Filehandle	return filehandle	filenumber%, result%

Chdrive	Change drive	drive%, result~

Path	Return current path	drive%, returnstring$, result%

Font Functions:

Cfont	Change font	handle%, parameter$, result fonthandle%

	parameter$ = “fontname, width, height [,I] [,U] [,B1-9]

Freefont	Release font	fonthandle%, result~

Printer Functions:

PrinterDialog	Common printer dialog	handle%, result%

PrinterDc	Return printer DC	result%

Beginprint	Start printout	dc%, jobname$, result~

Lfont	Set font for printout	parameter$, result%

Ltext	Print text	x%, y%, text$, result~

LCircle	Print a circle	x%, y%, radiut%, result~

Lline	Draw a line	x1%, y1%, x2%, y2%, result~

Endprint	Finish printing	dc%, result~

PageFeed	Force a page feed	result~

AbortPrint	Cancel printjob	result~

Mouse Functions:

Hidemouse	Hides mouse cursor	result~

ShowMouse	Show the mouse if hidden	result~

Date and Time Functions:

SetDate	Set the date	date$, result~

	Date$ format is “DD.MM.YYYY” or “MM/DD/YYYY”

Settime	Set the time	time$, result~	time$=“HH:MM:SS”

Getdate	Return the date	mode%, returnstring$, result~

	Mode =0 gives “DD.MM.YYYY” and non 0 = “MM/DD/YYYY”.

Gettime	Return the time	returnstring$, result~

Miscellaneous Functions:

Bin		Return binary of value	value&, returnstring$, result%

Delay	Pause	value&, result~

Even	Is a value even?	value&, result%

Odd		Is a value odd?	value&, result%

Mod	Modulo calculation	value1&, value2&, result&

Invert	Invert colours	x%, y%, w%, h%, result~

Sound	Make sound	frequency&, duration&, result~

General Windows Functions:

SetWindowStyle	Change style	handle%, style&, result~

GetWindowStyle	Return style	handle%, result&

CreateWindow	Make an object	handle%, object$, title$, id%, x%, y%, w%, h%, style&, classstruct&, result%

	object$ is a string with one of the following terms: BUTTON, COMBOBOX, EDIT, LISTBOX, SCROLLBAR or STATIC. Classstruct is usually 0.

CloseObject	Close an object	handle%, result~

RegisterClass	Registers a class	class%, result%

SetText	Sends text	handle%, text$, result~

GetTextLength	Returns text length	handle%, result%

GetText	Gets text	handle%, returnstring$, result%

SetFocus	Sets the focus	handle%

Editbox:

EditBox	Make an editbox	handle%, title$, id%, x%, y%, w%, h%, style&, result%

edcls	Clear text	handle%, result~

edgetmodify	Has been changed?	handle%, result%

edgetlinelength	Get length of line	handle%, linenumber%, result&

edgetline	Get line of text	handle%, linenumber%, returnstring$, result&

edgetlinecount	Get number of lines	handle%, result&

edgetselection	Get highlighted text	handle%, returnstring$, result%

edlimittext	Limit text entry	handle%, limit%, result~

edgetcursorposition	Return cursor pos.	handle%, result%

edsetcursorposition	Locate cursor	handle%, position%, result~

StaticText:

StaticText	Statictext display	handle%, title$, id%, x%, y%, w%, h%, style&, result%

Listbox:

ListBox	ListBox	handle%, title$, id%, x%, y%, w%, h%, style&, result%

lbselectstring	Highlight a string	handle%, selstr$, result%

lbselectindex	Highlight by index	handle%, index%, result~

lbselection	Return selected string handle%, retstr$, result%

lbselectionindex	Return selected index handle%, result%

lbfindstring	Find a string in list	handle%, s$, result%

lbgettext	Returns string from index	handle%, index%, restr$, result%

lbdelstring 	Delete an entry	handle%, index%, result%

lbaddstring	Adds a string	handle%, s$, result%

lbinsertstring	Insert a string	handle%, index%, s$, result~

lbdir 	Put directory in list	handle%, dir$, result%

lbgetcount	Number of entries	handle%, result%

lbgetsel	Has an entry been selected? handle%, index%, result%

lbgettextlen	Entry length	handle%,
